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* robust detector for this dependent noise del is characterized by a
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that is least favorable for the correspondi independent-noise case.
However, the resulting detector design for d endent noise differs from
that for independent noise; in particular, th robust detector for de-
pendent noise is based on a linearly corrected version of the influence
curve that defines the independent-noise robust detector. The worst-
case performance of the proposed robust detector relative to that of
the independent-noise robust detector is also ana yzed, with the
conclusion that the performance of the proposed t Yhnique is better,
to first order in the averaging weights, in this r pect. A modification
of this robust detector is also proposed which eli nates some practical
disadvantages of this system while retaining equival nt performance to
first order. The specific situation of contaminated aussian noise
is treated in order to illustrate the analysis.
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FOREWORD

This report is a preprint of a paper with the same title which is

scheduled to appear in the September 1982, issue of the IEEE Trans-

actions on Information Theory (vol. IT-28). This is the second part of

a wo-part study, the first part of which is published as CSL Report No.

R-931.
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I. Introduction and Prelim-naries

As in Part I of this study [11, we consider the signal detection

problem described by the following pair of statistical hypotheses concerning

a random process (x ; i f ,2,...,.) from which we have a sequence

.xi; i = 1,2,...,n) of observations:

no: Xi - Ni ; i = 1,2,,n

versus

U: Xi = Ni + B ; i = 1,2,...,n ()

where (Ni; i = 1,2,..., ] is a stationary noise process and 9 is a known

positive signal. Part I of this study [11 considered the problem of

designing asymptotically efficient detection systems for the problem of (1)

in which the noise process exhibits a weak moving-average type of dependence.

Specifically, [1] considered the noise model

N . p1++p ; i ,2,o.. (2)

where Y; Ei Z] is an independent and identically distributed (i.i.d.)

noise-generating sequence with marginal probability density function (p.d.f.)p,

and where p is a fixed parameter indexing the degree of dependence among the

noise samples. It was shown in [I] that an appropriate detector for this

situation with (pI small is of the form of the corresponding optimum

S.,findependent-noise (p - 0) system with an added linear correction factor

" depending on the degree of dependence as parameterized by p and on the

. -: particular noise statistics as determined by p. It was also seen in [I1

that appreciable improvement over the corresponding independent-noise system

can often be expected from the proposed system, particularly for channels

dominated by impulsive noise.

* * * . * - - * * - .- . ' * ..' j ' - . . -3- . . . . . . . . .
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The specification of the detection system proposed in (11 requires a

complete knowledge of the statistics of the noise process [Ni; i - 1,2,...,.)

as determined by p and p. An important practical modification of this

problem is the situation in which the noise distribution is not known

exactly but rather is known to be in some class of possible noise

distributions representing uncertainty in a nominal noise model. In this

situation a detector is desired whose performance does not deteriorate

drastically over the class of possible noise statistics. A detection system

with this general property is usually known as a robust detector. Several

* investigators have considered the problem of robust detection in the model

. of (1) for the case in which the noise sequence is independent. General

results for robust hypothesis testing in a model which includes the

independent-noise case of (1) have been obtained by Huber 121 and by Huber

and Strassen [31 within a minimax risk (or error probability) formulation

* and by the author [4] within a maxiamn distance formulation. Martin and

Schwartz [5] have considered robust detection in the model of (1) for the

* - case in which the independent noise process is a mixture-contaminated

Gaussian process. Within this context both miniumx risk and miximin local

power slope1 are treated in [5). Kassam and Thomas [8] have extended the

results of (51 to solve the maximn-power-slope formulation for the case of

mixture-contaminated nonsussian noise processes, and, in an asymptotic

formulation, El-Sawy and VandeLLnde (91 have treated the minimax risk

problem for (1) with general uncertainty classes for the marginal distribu-

tion of the independent noise sequence. A sequential version of (1) is

Etreated in a similar context by El-Sawy and VandeLinde in [101.

'Recall that the local power slope is the criterion for designing locally
most powerful detection system (see Capon E61 or Ferguson [71).

.-.. -*.. '.. -- . . ,.- . .. . . . - -.- -,--.- .- ,-.- -- . .... ...-- --.. .. .-.. ,...-. . .. .-.
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Considerably less work has been done on the problem of robust detection

P for the situation of (1) with dependent noise, although the related problem

of nonparametric (or distribution-free) detection in (1) with dependent

noise has been considered in some detail (see, for example, Kanefsky and

Thoma (111, Gastwirth, t el.. [121, Davisson, et al. [131, Kassam and Thoms"

[141,and Sirvanci and Wolff [151), as has the statistically analogous problem

of robust estimation of location with dependent errors (see Hoyland [161,

Gastwirth and Rubin [171, Portnoy [18,191, and Koul [201). In this paper we

consider robust detection in (1) for situations in which the noise can be

modeled by a weakly dependent moving-average process as described by (2)

with small IpI. Since the paramter p can be estimated straightforwardly from

. an observation of [Xi; i 1,2,...,m) (see Eq. (53) of [11) we model statistical

* .- ~.uncertainty in the noise sequence (Ni; i = 1,2,...9m) by assumi~ng that the

p.d.f. p of the noise-generating sequence (Yi; i E Z) is not known exactly

but, rather, is known only to be a member of a class 3 of syumtric probability

densities. Note that, for analytical reasons, the criterion of asymptotic

"* detection efficiency (which was applied in [1] for optim design) is not

suitable for robust design in this situation (see, for example, Martin and

deMontricher (211). Thus, we adopt a Neyman-Pearson design philosophy and,

for a particular detector (p, consider the probabilities of false alarm and

detection, PF and PD' respectively, given for p E 3 by

P1 (Pjp) - P[t chooses H11H 0 is true and Y, -. p Y i E Z] (3)

; and

-- p) P[c chooses 11111 is true and Y- p Y i E Z) • (4)

ii

.. . , - , - "'" o .. . . .1 - . -4- .- . . . . . o - . - . . . , . . ... .
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Adopting the Sam-theoretic philosophy of robust design (as proposed by

Huber [21) ve may define an at-level robust detector for this situation as

6 one which solves the gam
51

mx [ PinfPD(p)) subject to sup P1 (qp) a (5)

-'. where 5 is an appropriate class of detectors. Note that (5) reduces to the

traditional Neyman-Pearson design criterion if Y consists of a single p.d.f. (71.

In this paper we seek the solution to (5) for the small-lpl situation in

I (1) and (2) by restricting &8 to be the class of -detectors as proposed by

El-Sawy and VandeLinde in [9]. In so doing we are able to exploit related

results obtained by Portnoy [18,19] for the problem of robust estimation of

a location parameter with dependent observation errors modeled by (2) with

, small 1p1- The class of detectors to be considered here is defined

Sspecifically in Section LT and first-order (in p) approximations to their
asymptotic false-alarm and detection probabilities are developed. The structure

of M-detectors that are optia. with respect to these approximations is also

presented in Section II, and it is seen that the system modification to

account for weak noise dependency in -detectors is similar to that found

for the detectors considered in [1]. The first-order approximations to the

error probabilities developed in Section II suggest a first-order approxima-

*, tion to the munimax problem of (5), and Section III considers the solution to

this first-order version of (5). In particular, it is argued that a small-to 1

robust design for this problem is the smll-Ili optima. design corresponding

to a least-favorable noise-generating p.d.f. Moreover, it is seen (as in

the analogous situation of [18]) that this least-favorable noise-generating

p.d.f. does not depend on the value of p and thus is the same as the p.d.f.

• """.
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that is least favorable for the independent noise case. This latter result

is useful because the corresponding independent-noise problem has been solved

previously for a number of noise uncertainty models (see, for example,

, :- [5,8,91). In Section IV, we consider a modification of the system developed

in Section III because of qualitative disadvantages of the system of

Section II. It is demonstrated analytically in Section IV that this

:i modifJication is equivalent, to first order in p, to the detector developed

in Secton III, a fact which supports the use of the modification intuitively

since the modified system is superior to the unmodified one. Also in

Section IV, the specific example of a contaminated Gaussian noise model

(as proposed by Huber [22]) is considered in some detail in order to illustrate

-the proposed robust design procedure. In Section V we return to the general

situation to consider the degree to which the worst-case performance of the

S proposed robust detector outperform the corresponding independent-noise

< ~*o* ( = 0) robust detector. In particular, it is shown that this performance

difference is of first order in p, a fact which indicates that the

consideration of dependence is even more important in the robust design

problem than in the corresponding optium design problem of (1]. (The

corresponding performance difference in [1] is of second order in p.)

Finally, Section VI includes some further discussion of the results of this

paper and of some possible extensions of these results.

r"

-: 9;
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TI. M-Detectors and Their Performance in Weakly Dependent Noise

El-Sawy and VandeLinde [91 have solved the problem of (5) for the

asymptotic (n -) case with independent noise (p - 0) when the classb

is restricted to contain only detectors of a specific structure known as

M-detectors. This class of detectors is based on a class of location
.4i estimates known as -estimates introduced by Huber in [221, and certain

members of this class derive their robustness properties from analogous

properties for robust estimation. Robust -estimates of location for the

weak dependence model of (2) with small IPI have been considered by Portnoy

in [181 and [191, and thus it is reasonable to consider the related class of

M-detectors to seek a solution to the analogous problem of (5) with Ip small

-. --, but nonzero.

We therefore restrict . to contain only detectors of the following form

(PY if6 (X) - T (6)

. where e (x) is a solution to the equation

n
E *(xi-T) - 0 (7)
i-1 T 4 (X)

% '. with * an arbitrary function, known as the influence curve of 6 (see also

Hampel [231 and Huber [241) characterizing the detector 9 " Here C*(X)

denotes the probability with which we accept H1 given that x is observed,

and the threshold Y and randomization T are chosen to yield desired

false-alarm performance. A detector of the form (6) is known as an

'.. °
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M-detector [91 and the de.-etion statistic 9 (x) of (7) is an M-estimate

3 [22]. Note that the M-estimate is a generalization of the independent-

noise mai um-likelihood estimate of location of X which corresponds to

the particular choice of influence curve *(x) - d log[p(x)]/dx (see, for

example, Silvey [25]). Moreover, in the independent case, the M-detector

corresponding to the maximum-likelihood M-estimate is asymptotically

equivalent to the likelihood ratio test of H0 versus B1 (see, for example,

Lemma 3 of [91). Thus, the restriction to detectors of the form of (6) is

reasonable for the smallp and large-n case in that it does not eliminate

the optimum detector for any member of I from consideration when p - 0. Note

further that the class of M-estimates includes the sample mean (given by

*(x) - x), for which the corresponding M-detector is the linear detector,

as well as the sample median (given by *(x) - sgn(x)).

3 Note that, for many choices of the influence curve *, (7) will sometimes

have multiple solutions; however, for analytical (and inmplementational)

purposes, we would like to specify a particular solution to (7). Thus, if

for a given x there are mltiple solutions to (7) we will choose (x) to be
- A: - I n

the solution closest to the sample mean x E xi , and, if there are two
elo

solutions equidistant from x, we choose 8 *() to be the larger of the two.

Also, if (7) has no solution for a particular x we take W() - 0. With this

construction of e (x) we may state the following result which follows from

- Theorem A.2 of Portnoy [18].

• - Theorem 1: Assume the model of (1) and (2). Suppose a - Var(Y1 ) < * is
continuous and bounded, E(*(Ni + 0)] is strictly increasing in a neighborhood

of e-0, and EE*(Ni)] - 0. Then 8^(X) converges in probability to 8 under H1

and to 0 under H0 as n-em.

-------------- - --o-.-...." . .. .........................................................................-....... ,. , +
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Proof: For the model of (1) and (2) with a < it follows from the

Chebychev inequality and from Lena 3 of Billingsley [26 , p. 1721 that
* in

E X converges in probability to 0 under H1 and in probability to 0n- i I

under H0 as n -,e. This and the fact that ENi; i = 1,2,...,., is

2-dependent (i.e., Ni and N are independent if li-jil > 2) imply Theorem 1
2

via Theorem A.2 of [181.

Thus, under the mild conditions of Theorem 1, we see that the M-detector

.. of (6) provides a consistent test of H0 versus H1 provided that the
*0

threshold T is between 0 and 0. That is, Cp with T E (0,9) has the property

that false-alarm and detection probabilities,PD and PV converge to 0 and 1,

respectively, as the number of samples n approaches a. Consistency is, of

course, the very least that we should require of a detection procedure;

3. thus in order to optimize over the class .6, it is of further interest to

approximate the large-n performance of the detectors of this form for the

weak dependence model of (2). For this purpose we may state the following

*result which follows straightforwardly from Theorems 2.1 and A.4 of [18].

* Theorem 2: Assume the hypothesis of Theorem 1. Suppose in addition that

v is differentiable except as a closed set D of Lebesgue measure 0,

that *' is uniformly continuous off of D, that 0 j D, that Et*'(Ni)l

and E(*' (Y 1)) are positive, and that the characteristic function Oy of Y,

satisfies j u2 10y(u)Idu < -. Then, with Xi - Ni+9 for i-l,2,...,a, the

quantity n'h (X) - ) converges in distribution to a Gaussian random

2 3°.** variable with mean zero and variance a (*,p;p) given by

2Note that the sample mean can be replaced by any other consistent estimate of

e in this analysis (see [181), in which case the condition a < might be
relaxed in Theorem 1.

3 As in [1], by O(p ) we mean Ur I(p 2)/ 1 < a.
P 0

I- p -, y.. 0. ." ." : , - , -" ' : ' i " ! -" ' -' ' ' -' ' ' -" -' - - -: r,,,,,. ",;,,.., ,;,'...•,,:.. " ' ' "",,. ..m ,- '
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wh r t 2 (Y l ~ ECY I* Y,)V(Vqp(, 2 + p (9)

(Ect (Y) E[*'(Y 1 ))

with expectations computed under the assumption that Y1  p.

Discussion: The validity of Theorem 2 relies on two basic results: a

central limit theorem (Theorem A.4 of (18]) yielding the asymptotic

normality of 9 QA) and an approximation theorem (Theorem 2.1 of (18])

yielding (8). The proof of the central-limit part of this theorem relies in

part on a Berry-Esseen type theorem for a-dependent random variables due to

Stein (27, Corollary 3.11 which gives an error bound of 0(n"4 ) for the

normal approximation to the distribution of n (a - ). Thus, under

the conditions of Theorem 2, we may write the false-alarm and detection

probabilities of as

P,(C *IP) =- -(nr/ [V( ,p;p) +0(p2)]) + 0(n" ) (10)

and

PD(wI IP) 1 - (n(T _ e)/[y(v,P;P) +0(P 2 ) 1)+0(n), (11)

respectively, where j is the standard normal distribution function

V(x) x e t/2 dt. (12)

A In view of (10) and (11) we adopt, for analytical purposes, the following

large-sample weak-dependence approximations to PF and PD



10

(cp - -I(n'r/ [V(,p;p)] 4 ) (13)

and

,D (-(nC(D-)/EV($,pip)1l) . (14)

Note that, for a fixed noise-generating density p E 7 and threshold

T E (O,), the error probabilities of (13) and (14) can be optimized

simltaneously by minimizing the functional V(*,p;p) over an appropriate class

of influence curves. Note also (hat, for fixed p, we have
ofinluneures o sV( o tt [efo f

where e(#;p) is the first-order approximation developed in Part I of this

* study (see Lemma 1 of (1]) for the efficacy or differential signal-to-noise

EV- ratio of a detector for (1) and (2) based on comparing the detection statistic

n
E #(Xi) (16)

to a threshold. Thus, the criterion of maximm e(#;p) which was developed

in Part I in the context of efficient detection for (1) and (2) with the

structure of (16) is equally valid for approximately optimm detection

in the situation with the structure of (7). In particular, by applying

Theorem 1 of (1] we have that, within mild regularity on p, the problem

n V(*,p;p) is solved for fixed p by the influence curve

#(x) - -p'(x)/p(x) - 2pl(p)x/(l +2p) (17)

where p' denotes the derivative of p and where I(p) is Fisher's information

number for location of p defined by

.(p) -f [(p'(x)) 2 /p(x)]dx • (18)

o-m

°. 
.



Note, however, that the influence curve defined in (17) does not satisfy the

hypotheses of Theorem 1 and 2 above since this function is not bounded.

However, as is shown in Section IV below, the function of (17) can be

approximated by a bounded influence curve that yields essentially the

same performance for small 1pl. This issue is discussed further in

* Section IV.
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111. Robust ]Detection in Weakly Dependent Noise

The analysis of the above section indicates that the quantities of

(13) and (14) can be used to approximate the probabilities of false alarm

and detection, respectively, of H-detectors operating in the presence of the

noise process of (2) with small jp I. Thus, in order to design H-detectors

that are robust in the presence of weak dependence, we my consider the

miaxiuwLn forimlation defined by (5) as applied to the error-probability

approximations of (13) and (14).

N ~ To seek solutions to this problem we first consider the alternate

minimax problem

min max V(*,p;p) (19).

*ETp E S

where the functional V is from (9) and where T is an appropriate class of

influence curves.* We note that a saddle-point solution to (19) will be a
A :,

pair R) E T x S satisfying

max V(*R'P;P) -V(*R'PR;P) m in V(#,pR;p). (20)
p E S E T

and the existence of such a pair is equivalent to the validity of the

winimix property (see, for examle, Barbu and Precupanu (281)

win max V(#,p;p) -max min V(*.P;P) * (21)

Note hatif ~ E Y x S satisfies (20), then it follows from (13)

and (14) that for any threshold T E (0,0) we have



13

m pE ~ p rP)tp3 )  (22)

and

*min Mx 'D(*;)MP J R
$EY pEl (23)

For a particular choice a of false-alarm probability, the threshold R given by

'rR -n[V(*RpR;p)l 4 *'(1-a) (24)

will yield a value of P = a ; Thus, in view of (22) and (23), if _

of (24) is between 0 and B then the pair (*ltpR) is a saddle-point solution

to (5) with PD and PF replaced by PD and PF' respectively. Note that the

condition T 0 is satisfied if a < k, which is the only range of interest

-* for a. However, the eondition rR < 9 places a lower bound on the signal

strength B, relative to a and n, for which minimaxity can be achieved with
A A

PD and ;F. Further discussion of this point is included in Section VI

below.

It is noteworthy that a pair solving (20) satisfies (via (10) and (11))

PF(p P) PF ) + O(n " ) (25)

and

.rPD((P p~p) R PD (4p*;PR) + O(p2 + O(n- )  (26)

2-f.: for every p E 7. However, corresponding 0(p and 0(n h) statements

S...

I-"' " " ' ' " ' ' ' " " - " '"-" '"" " " " " ""," " "" " ' - . .""."i ."""", -.. :,-,-.,.. -
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concerning sup P Frp~ ;p) and Lu * P f p cannot be made unless the

O(p 2 ) and O(n =k) term in (8), (10), and (11) are uniform onS. Nevertheless,

because of (25) and (26), a density satisfying (20) can be considered a

least-favorable member of r for the detection problem of interest.

In view of the above coments, we see that a solution #R to (19)

yields an H-detector with desirable weak-dependence lrge-sample robustness

3. in performance over the class F. The problem of (19) has been studied

in (181 in the context of robust H-estimation of location. Note that, if

(R£p R) satisfies (20) and if PR and the members of Y satisfy the

hypothesis of Theorem I of (11, then Theorem 1 of [11 indicates that R

must be given (up to a scale factor) by

* 1 (x) - -KRO) x ; x E 3R (27)

where to- /pR and KR - 2pl(pR)/(l+ 2 p), provided this function (27) is a

member of T. (Recall that 1(p) denotes Fisher's information number given

by (18).) Using Eq. (36) of [11 we have (see also Eq. (3.8) of (181) for

fixed p EV

Ln VIp;p) - (1+4p)[(p))] '+O(p 2)

- (l+4)min V(*,p;O)+O(p 2 ) . (28)

Thus, provided T contains the appropriate influence curves, we may argue

(as in [181) that to O(p2 ) the density pR solving -x min V(9,p;p)
pE *E



does not depend on the value of p. Theorem 1.1 of [181 gives a more precise

reinforcement of this argument. Noting from (28) that

a !' min V(*;p;O) - (29)

.)

a saddle point solution to (19) thus can be sought by first choosing

PR E Y to solve

mn 1(p) (30)
pES

and then choosing R from (27). Note that the resulting robust influence

curve is a linearly corrected version of the influence cruve for robust

M-detection in independent noise (i.e., to) as derived in (9]. This solution

is thus completely analogous to the corresponding result for optimum

detection with known p derived in [1].

The existence and uniqueness of solutions to (30) and their

relationship to solutions to (19) vith p - 0 have been studied in detail by

Huber in (221. In particular, it follows from Theorem 2 of (22] that if 7

is convex and 1(p) < a for all p E 5, then a density pR solving (30) and

its p - 0 optimum influence curve to - "P&/PR is a saddle point solution

to (19) with p - 0 if to E y. Furthermore, Theorem 4 of [22] implies that,

if V is also vaguely compact, then there is a unique mmber of S solving

"4 (30). Explicit solutions to (30) for several density classes of interest

'4 'and other aspects of the problem of (30) are found in Huber ((221 and (29])

and in Sullivan, et al. (301.

.9o
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IV. A Modification of the Haximin Solution

As noted above, the analysis of Section IV indicates that a robust

.*: M-detector for JpJ # 0 has an influence curve that is a linearly corrected

version of the influence curve of the p - 0 robust M-detector as studied by

El-Savy and VandeLinde in [9]. This structure is undesirable for two reasons.

First, as noted in Section 1I, an influence curve with a linear component is

not bounded and thus does not satisfy the conditions needed for the validity

"* of Theorems 1 and 2. This is only an analytical disadvantage which can be

surmounted without too much difficulty. Rowever, a more important objection

to this detector is that the unboundedness of the influence curve violates

basic intuitive principles of how robustness is achieved in a detector.

In particular, most robust detectors provide a means for limiting the effects

of extraordinarily large observations (outliers) which, if not accounted for,

tend to destroy detection performance (see, for example [5]). This objection

was also raised in [18] where, for the particular case in which F represents

contaminated Gaussian noise, a truncated or lightly limited version of *R is

shown to produce an M-estimate which differs in worst-case performance from 6
2. 2

by only O(p ). In this section we consider a similar modification of the

robust -detector developed in Section III in a slightly more general context.

Since the robust influence curve * of (27) is objectionable because of

its unbiundedness, it is reasonable (as suggested in [181) to introduce

light limiting into this structure to produce a bounded approximation to R

It is usually the case that the independent-noise robust influence curve *0

is bounded (see [91 and [221); so it is usually the linear correction term,

-KRx, that produces the unboundedness of *R" Thus a reasonable modification

";a
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of R is to replace the term KRx with a lightly limited version I.1 L(x)

where A (x) is a light limiter defined by

z ~; if lxi :5 L

.1(x) - n (31)

i with L a positive constant. Note that Chebychev's inequality implies that

the probability that an individual observation exceeds the limiting point L

is bounded by an upper bound proportional to L . Thus, by choosing L

sufficiently large, we should be able to make the effects of replacing x

by .(x) in #g negligible. In particular, if we choose L to be O(p ), then

the effects of this replacement should be O(p ). With this motivation, we

thus propose replacing (R of (27) with the modified influence curve *

defined by

*(x) i x: /

* *M(x) - (32)

to -(K)RLkP sgn(x) ;if jxj > 1/k

where k - O(p) and, as before, to - "PR/P 1 " For this structure we then

have the following result.

Theorem 3: Suppose 3 is such that (30) has a solution pR with to -Pi/PR

satisfying the conditions of Theorem 1 and 2. Then, for each p E • such

that ECy < , we have

I V(9R,p;p) + 0(p2 ) (33)
U+

,fJ.



Furthermore, if ZE¥ 2] !S B < for all p E S, then

sup * )+0 2 (4sup V(PM9P;P) ' sup V(*R,p;p)+0(p2) , (34)
p EY pE

provided either p k 0 or p < 0 and IPi is sufficiently small.

A proof of Theorem 3 is included in the appendix. As suggested above,

this proof relies upon (among other things) Chebychev-type bounds on

probabilities that the magnitudes of the observations exceed k . We see
P

that, under the conditions of this theorem, the truncated version of *R

yields a detector whose worst-case performance is essentially equivalent

to that of . Note that if the conditions of Theorem 3 are not satisfied
R_

(i.e., if there is a p E Y such that ElY ) - m) then the M-detector based

on # will have very poor worst-case performance relative to that of O .

Thus we may conclude generally that 41 is preferable to cp from both

practical and analytical viewpoints.

To illustrate the design of a robust M-detector and its modification as

suggested by (32), we consider a specific example treated previously in

various contexts of robust design by Huber [221, Martin and Schwartz (5],

* and Portnoy (18]. In particular, we consider the class 70 of contaminated

Gaussian densities defined by

so -p Pp - (l-,)C + e h; h E X) (35)

. where C(x) - (2Tr)exp Cx 2 /2] is the standard Gaussian density, c is a fixed

number between 0 and 1, and 3C is a wide class of symmetric pdfts. Note that

F 0 thus defined can be considered to be an uncertainty neighborhood of a

* nominal Gaussian model with a degree a of uncertainty in this model. The

,-, ,---- ; .*.,;,,.- *- -,., ,- - .- ...-. . '' . -. .. ,- .- . . ... . . . . . . . . .. . .
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density L.ninizing Fisher's informstion I(p) over 30 is given by Hluber in

(221 and has the well-known form

(I ; lxl k

PR (X) -(36)1(1 - 09 k)ezpE-kI II - k1) ; xi. > k

where k is the unique positive solution to the equation

2#(k) -I + 2C(k)/k - (1-e)'1 (37)

The p - 0 robust influence curve is thus given by

*o (38)

.k sgn(x) jxj > k

and the 1pI # 0 robust influence curve is (from (27))

,.: R )- I xl < k

R kagn(> (39)* I k sn(x).-Kx ; Ix k ,

which, for the case p > 0, increases linearly in [-kk] and decreases

linearly in [-kgk]€ . Note that the value of l(p_) is given for this

case by

I(p.R) - (1 -u)(2# (k) - l) , (40)

which, of course, mst decrease monotonically with 9. Using (37) and (40)

the values of the paramsters k and ., (recall that K1 = 2pl(pR)/(l+2p))

can be computed for given 4 and p. For example the case en 0.1 and p 0.1

.. . " .....- . .... r.l....-,, -n.. . . .
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yields k - 1.14 and - .115. A reasonable bounded modification for the

influence curve of (39) with p > 0 is that suggested in (181, namely

s(g) - k sn(x) -Kx ; k < jxj: k1l (41)

0 ; I~xI > k-

: where k p is 0(P) since KRis 0o(p) Figure 1 illustrates this

function for the case e - 0.1 and p - 0.1. Further discussion of this and

related examples is included in Sections V and VI below.

-.

°'i
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V. Performance of the Proposed Robust System Relative to the

Independent-Noise Robust System

In Section III we argued that the least-favorable noise-generating density

PR is independent of the value of the dependence parameter p. Thus, for

each value of p, the robust influence curve tR s the optium influence

curve (i.e., the solution to mmin V(c,p;p)) corresponding to the fixed density

SR" .It follows from the analysis in Part I of this study (in particular, from

Theorem 2 of [1]) that, within regularity conditions, the quantities V(#R,pR;P)

and V(#O,p ;p) differ only by O(p2 ) terms where, as before, *0 1/P

* Since to is the influence curve one would use for robustness if there were no

dependence, a question arises as to whether the worst-case performance4 of

2
o 0over Y might be only O(p ) different from that of lR That this is not

generally the case is shown in this section; in particular, we demonstrate that

this difference in worst-case performance is actually O(p) for most uncertainty

models of interest.

To consider the worst-case performance of cR relative to the worst-case

performance of c$ for fixed p we first give the following result.

*0
NLem 1: Suppose PR E F solves (30) with 0 < 1(p ) < 0. Suppose further that

there are numbers b and B such that 0 < b:5E E*2(Y1 ) 
-  < %

ZE{Y. <5 B, and b <5 < B, for all p E 3 where 0  -pI/p. Then, if

p i 0 or if p > 0 and is sufficiently small, we have

-V(#'p;) I + Cp+ O(p ) (42)

* rn. V(*o,p;p )  p

4 It should be noted here that V(*0 ,pR;O) is the worst-case value of V(40 ,p;0)

over p E $, but it is not necessarily true that V(*0,pR;p) is the worst-case

value of V(to,p;p) over F for p 0 0. In fact, this latter situation is not

usually the case, as follows from Lema 1 and Theorem 4.
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where

c- 41 pR)V(* ,p;-k) (43)

and where O(p 2) is uniform over 5.

The proof of Lea 1 is straightforward and wil be omitted.

This result shows that, although V(*R'PR;p) and V(*OpR;p) differ by only

O(p 2 ) terms, V(*Rp;p) and V(*0 ,p;p) may possibly differ by O(p) terms if p pR"

(Note: it follows straightforwardly from (9) that V(*O,PR;-k) = 0.) It

follows from Lema 1 that, for fixed p, we have

1P, + 
.. 

44

sup V(*00p;p) sup V(*Rp;p)+C[pI +0(p 2 ) (44)
""pE$ pE$

where C sup C if p > 0 and C inf C j if p < 0. We note, in particular,

.E3pE P pE9P

that (44) can not hold for any C < 0 since we must have

sup V(*o0 p;p) a V(*O'pR;P) - V(*RpR;P) + 0(P)

- sup V(*Rp;P) + 0(2) (45)

where the first equality in (45) follows from Theorem 2 of [1]. Since (45)

is valid for both positive and negative p, (45) and (42) imply that either

V(Oop;-k) takes on both negative and positive values over $ or V(#op;-k)

is identically zero on F. Thus, for every p there is a C k 0 such that

(44) holds, and C - 0 if, and only if, V(40 ,p;-k) - 0 for all p E ;. We

note again that C depends only on the algebraic sign of p. Some conditions

under which C # 0 are summarized in the following result.

Theorem 4: Suppose 3 is such that the following three conditions hold:

(i) There is a setf Rand a constant K> 0 such that x E

implies #0 (x, K sgn(x).

". ..
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* " (ii) There exist pdf's p, and P2 'n such that PI P2 " PR

*9; - a,,on C andf lyIpl(y)dy <j IyIpR(y)dy < Iyp(y)dy.

(ii) 0 < I(pR) < a and lm *o(y)p'(y ) -0 for P' PRq PjPl. and P'P 2 ""; !~yl--

Then V(*op 1 ;-k) > 0 and V(*oP 2 ;-k) < 0, and hence the constant C of (44)

is positive.

Proof: See the appendix.

Thus we see that, under the conditions of Lemma 1 and Theorem 4, the

; improvemnt in worst-case performance by using *R rather than io is of

first order in jpl. Theorem 3 implies that #M of (32) also yields this n(p)

improvement. Note that the conditions of Theorem 4 are satisfied by most

of the usual models for distributional uncertainty. For example, the

I tcontaminated-Gaussian class treated in Section IV satisfies Conditions (i)
through (Lii) as is easily seen from (35), (36), (38), and (40). Other classes

that satisfy these conditions include contaminated-mixture classes with

nominal models other than Gaussian (see Huber (221 and Kassam and Thomas [81),

p-point classes as considered by El-Sawy and VandeLinde [9,101, and the

class of densities whose cumulative probability distribution functions differ

- in sup-norm from the standard Gaussian by no more than some prescribed amount

(see [221). Thus, we may conclude that M is generally preferable to #0

to the extent that 0(p) terms are appreciable (i.e., to the extent that the

model of (2) is of interest).

9.
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r ' VI. Suemary and Discussion

34 In this paper we have considered the problem of designing robust systems

for the detection of signals in weakly dependent noise. To find solutions

'T~q..to this problem we have considered the clss of Mq-detectors that was proposed

by El-Sawy and VandeLinde in [91 for robustness in the corresponding

"" ~independent-noise case. For tis class of detectors it was seen that the

robust estimation analysis of Portnoy (181 is applicable to the design of

robust structures for the weakly dependent moving-average model of noise

*-' dependence. In particular, it was seen that an a-level robust M-detector q.

for a class 3 of noise-generating p.d.f.'s can be sought by choosing PR to
minimize Fisher's information I(p) over Y and then taking tg from (27). The

*-' detection threshold 'TR is chosen by (24) and must lie between 0 and 0 for

approximate ainimaxity. Since *R is usually not bounded it is intuitively

more reasonable to modify *R by truncating the linear term at points + k 1

where k P is 0(p) as In (32). The resulting M-detector cM Is equivalent to

1*R to 0(02 ) under the conditions of Theorem 3. The worst-case performance

of both of these detectors is better by O(p) than that of the p - 0 robust

M-detector under the conditions of Lemma 1 and Theorem 4. As is the case

with results of Part I of this study [1], the results of this paper can also

be extended straightforwardly to moving averages of higher order than (2)

by applying the results of Portnoy [191 for M-estimation in such models.

0', However, the basic structure and performance of the robust M-detector are

unchanged by this generalization.

In general, to implement the robust detector I one must first computeR

9 R(_) from (7) and then compare this value to a threshold. However, note

........................................

-, ' !: ;'! S. .*'',:...-..''''' * ,.-' .-.- : ._ , ....... .. . *. ...... .. '. .. . . ''''-_, . .'' ,- ''.- '- '°.,' "- *'*''' -' ._ , .,''." '' . .. ..,
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n

that, if trx) is a strictly increasing function of x, then E *r(x " - T) is a
i-i

strictly decreasing function of T; and, in this case, can be implemented
9R

as follows (see (91):

~n I if E xi
L-1

n
y ;if E *R(xi -TTmO (46)

n
0 ;if E

where T. and y are chosen to give desired false-alarm performance. The

structure of (46) is simpler to implement than is (6) since it is not necessary

S..to solve (7) to perform the test of (46). However, it is not always the

case that R is increasing, although it will be increasing if

dt 0 (x)/dx > KR for all x E . (47)

o .. If p is strongly unimodal (i.e., -log(PR) is convex) then (47) holds for all

p < 0; however, for p > 0, (47) does not hold for many practical cases

even when PR is strongly unimodal because of the redescending nature of *R

(such as in the contaminated-Gaussian example of Section IV). If is not
f .

strictly increasing, then (46) cannot be used and (7) rest be solved;
i however, efficient iterative techniques for solving (7) have been developed

(see, for example, Collins 1311).

The robustness of the proposed M-detector is restricted to situations

for which the threshold T of (24) is between 0 and 8. As noted above, the

trivial condition a < j is sufficient for -R to be positive; however, the

c condition that r be less than B places a lower bound on B, for fixed a and n,

:'
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for which--ft is a mazLLn solution. If B is smaller than is necessary the
R

alternate approach of local robustness (see, for example, Kassan and Thomas

(81) can possibly be applied. However, the redescending nature of the

2 solution to In V(#,p;p) for p > 0 may cause problems in the local formun-

plation (see also Kassam, et al. (321).

Before concluding, two comnts concerning the overall optimality of

the proposed robust detector are in order. First, since we have considered

only -detectors, a question arises as to the performance of the proposed

* detector relative to other detectors that are not of this form. In answer

to this question we note that it has been demonstrated in [181 (Theorem 1.1)
U

that, within regularity, the optimm H-estimate of 0 in (1) has variance

2O(p ) close to the theoretical minim%= possible variance for asymptotically

Gaussian unbiased estimates of 0. Thus, among threshold detectors based on

estimates of 9, the class of H-detectors are capable of achieving overall

optium performance to O(p . As a second comnt we note that higher order

(in p) expressions for the asymptotic variance of et) are available (see

[18, p. 391 and [19, Leam 2.11); thus the question of whether or not a

r - corresponding higher order optium influence curve is possible arises.

However, that no such H-estimate exists follows from Theorem 2.1 of [191

r' which states that, for fixed p and within mild assumptions, no H-estimate

depending only on p can achieve variance closer than O(p ) to the theoretical

m.nimuim variance. This implies a similar statement for H-detectors.

d
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Appendix

A. A Proof of Theorem 3

Defne -mz[-k 4 uin[Y,,k 1 31). We have

2 - 2 +~'~

+ EtI*M(Yl)~l)12,

C*(~~y1)] + 2LXE(( - *~y

KE((Z -y 1 )y13 + 2 -CI J21 (Al)

Note that jZ -j! I YJ) so that the 'Last two term in the right-hand side

of (Al) are each bounded in magnitude by 2i 2C1.Cnengtescn

term in the right-hand side of (Al) we have (applying the Schwarz and

Chebychev inequalities)

22
JZEZ Y)*oyl)12: E(YZ Y-up *( )PClY 1  > )

.1 $up 2YCI

2Y2N

*Thus, since k and IKR are O(p), we have

EC#2(y~ _ Z(2( + 0(P 2  (A2)

Siudlarly, we have

Et*)(YO) - Z(#j(Y1)) + K R(IlIl > k-11

a E''t* l~)l + KR( (A3)



and

"N YVI- EtYl*R(Y1)) + KR1E(Y 1 -z)

Y *R- (Y1)l + o 2 )  (M)

Equations (A2) through (A) imply (33). In each of (A2), (A3), and (A)

the higher order term in p are uniform over 2 fEY)hsauiombudi

Thus, in this case, the O(p2 ) in (33) is uniform if (A3) is nonzero over r,

a condition which occurs if mi zE(*,(Y 1 ). 1 > -KB k2 
. The rest of Theorem 3

PE5

follows.

B. A Proof of Theorem 4

The sign of V(*o,p;-k) is the same as the sign of

r 2 P-q #0P( Y*0 (y)p(y)dy). (BI).

Writing p - P (p -pR), we see that the quantity of (31) is equal to

': j*2pR_ (f# ;pR) (f..y*o(y) plt y)dY) +  (P2 g

-
" (J'* (p - PR))(J' Y 0 (y)pR(y)dy) - (j'1*;P)(J y*0 (y)(p(y) - pR(y))dy. (B2)

The first two term of (32) add to zero. If p and PR differ only on Q the

third and fourth terms of (B2) are both zero and the final term of (B2)

becomes

I(PR)K[f fyPpR(y)dy "f jyp(y)dyl • (33)

Theorem 4 follows from (B3).
., ;.
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~ Footnotes

1. Recall that the local power slope is the criterion for designing locally

most powerful detection systems (see Capon [6] or Ferguson [71).

2. Note that the sample man can be replaced by any other consistent estimate

of 8 in this analysis (see (181), in which case the condition a2 <*

might be relaxed in Theorem 1.
.. .. 2 I (p2 )/ 2 <

3. As in [11, by O(p ) we mean lim O(p)/p <-
P-.O

4. It should be noted here that V(*O,PR;O) is the worst-case value of V(*op;O)

over p E S, but it is not necessarily true that V(*OpR;p) is the worst-case

value of V(*op;p) over 9 for p 0 0. In fact, this latter situation is

Unot usually the case, as follows from Le-m I and Theorem 4.
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Figure Caption

N Fig. 1 - Influence curve for robust M-detection in dependent contaminated

1AGaussian noise with 9 - 0.1 and p - 0.1.
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